Sample Code: How ChatGPT Trains Itself

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from transformers import GPT2Tokenizer, GPT2LMHeadModel

# Define a simple dataset for training
class ConversationDataset(Dataset):
    def __init__(self, conversations, tokenizer, max_length=512):
        self.conversations = conversations
        self.tokenizer = tokenizer
        self.max_length = max_length

    def __len__(self):
        return len(self.conversations)

    def __getitem__(self, idx):
        input_text, target_text = self.conversations[idx]
        encoding = self.tokenizer.encode_plus(
            input_text,
            add_special_tokens=True,
            max_length=self.max_length,
            padding='max_length',
            truncation=True,
            return_tensors='pt'
        )
        target_encoding = self.tokenizer.encode_plus(
            target_text,
            add_special_tokens=True,
            max_length=self.max_length,
            padding='max_length',
            truncation=True,
            return_tensors='pt'
        )

        return encoding['input_ids'].flatten(), target_encoding['input_ids'].flatten()

# Sample data (normally you would have a much larger dataset)
conversations = [
    ("What are the benefits of regular exercise?", "Regular exercise improves health, boosts mood, and enhances physical fitness."),
    ("How do I cook pasta?", "To cook pasta, boil water, add pasta, cook for 8-10 minutes, then drain."),
    # Add more conversation pairs here...
]

# Initialize tokenizer and dataset
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
dataset = ConversationDataset(conversations, tokenizer)
data_loader = DataLoader(dataset, batch_size=2, shuffle=True)

# Initialize the GPT-2 model
model = GPT2LMHeadModel.from_pretrained('gpt2')
model.train()

# Define the optimizer and loss function
optimizer = optim.AdamW(model.parameters(), lr=1e-5)
criterion = nn.CrossEntropyLoss()

# Training loop
epochs = 3
for epoch in range(epochs):
    for batch_idx, (input_ids, target_ids) in enumerate(data_loader):
        optimizer.zero_grad()

        # Forward pass
        outputs = model(input_ids, labels=target_ids)
        loss = outputs.loss

        # Backward pass and optimization
        loss.backward()
        optimizer.step()

        # Print loss for monitoring
        if batch_idx % 10 == 0:
            print(f'Epoch {epoch + 1}/{epochs}, Batch {batch_idx}, Loss: {loss.item()}')

# Save the trained model
model.save_pretrained('./trained_conversational_model')
tokenizer.save_pretrained('./trained_conversational_model')

print("Model training complete!")

Jalali Hartman is the founder of Robauto.ai. Since 2013 Robauto has been providing robotics education, news and innovation in the fields of robotics and Artificial Intelligence. To connect with Jalali: https://www.linkedin.com/in/jalali/